首页> 外文OA文献 >The HOM problem is EXPTIME-complete
【2h】

The HOM problem is EXPTIME-complete

机译:HOm问题是EXpTImE完成的

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We define a new class of tree automata with constraints and prove decidability of the emptiness problem for this class in exponential time. As a consequence, we obtain several EXPTIME-completeness results for problems on images of regular tree languages under tree homomorphisms, like set inclusion, regularity (HOM problem), and finiteness of set difference. Our result also has implications in term rewriting, since the set of reducible terms of a term rewrite system can be described as the image of a tree homomorphism. In particular, we prove that inclusion of sets of normal forms of term rewrite systems can be decided in exponential time. Analogous consequences arise in the context of XML typechecking, since types are defined by tree automata and some type transformations are homomorphic.
机译:我们定义了具有约束的树自动机的新类别,并证明了该类别在指数时间内的空性问题的可判定性。结果,对于树同态下的规则树语言图像上的问题,如集合包含,规则性(HOM问题)和集合差异的有限性,我们获得了几个EXPTIME完整性结果。我们的结果对术语重写也有影响,因为术语重写系统的可约化术语集可以描述为树同构的图像。特别是,我们证明了术语重写系统的一组正常形式的包含可以在指数时间内确定。在XML类型检查的上下文中会产生类似的结果,因为类型是由树自动机定义的,并且某些类型转换是同态的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号